1,931 research outputs found

    Second Order Superintegrable Systems in Three Dimensions

    Full text link
    A classical (or quantum) superintegrable system on an n-dimensional Riemannian manifold is an integrable Hamiltonian system with potential that admits 2n-1 functionally independent constants of the motion that are polynomial in the momenta, the maximum number possible. If these constants of the motion are all quadratic, the system is second order superintegrable. Such systems have remarkable properties. Typical properties are that 1) they are integrable in multiple ways and comparison of ways of integration leads to new facts about the systems, 2) they are multiseparable, 3) the second order symmetries generate a closed quadratic algebra and in the quantum case the representation theory of the quadratic algebra yields important facts about the spectral resolution of the Schr\"odinger operator and the other symmetry operators, and 4) there are deep connections with expansion formulas relating classes of special functions and with the theory of Exact and Quasi-exactly Solvable systems. For n=2 the author, E.G. Kalnins and J. Kress, have worked out the structure of these systems and classified all of the possible spaces and potentials. Here I discuss our recent work and announce new results for the much more difficult case n=3.Comment: Published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Lie theory and difference equations. I

    Get PDF
    AbstractA factorization method is constructed for sequences of second-order linear difference equations in analogy with the factorization method for differential equations. Six factorization types are established and recursion relations are obtained for various classes of special functions, among which are the hypergeometric functions and their limits, and the classical polynomials of a discrete variable: Tchebycheff, Krawtchouk, Charlier, Meixner, and Hahn. It is shown that the factorization method is a disguised form of Lie algebra representation theory

    Two-Variable Wilson Polynomials and the Generic Superintegrable System on the 3-Sphere

    Get PDF
    We show that the symmetry operators for the quantum superintegrable system on the 3-sphere with generic 4-parameter potential form a closed quadratic algebra with 6 linearly independent generators that closes at order 6 (as differential operators). Further there is an algebraic relation at order 8 expressing the fact that there are only 5 algebraically independent generators. We work out the details of modeling physically relevant irreducible representations of the quadratic algebra in terms of divided difference operators in two variables. We determine several ON bases for this model including spherical and cylindrical bases. These bases are expressed in terms of two variable Wilson and Racah polynomials with arbitrary parameters, as defined by Tratnik. The generators for the quadratic algebra are expressed in terms of recurrence operators for the one-variable Wilson polynomials. The quadratic algebra structure breaks the degeneracy of the space of these polynomials. In an earlier paper the authors found a similar characterization of one variable Wilson and Racah polynomials in terms of irreducible representations of the quadratic algebra for the quantum superintegrable system on the 2-sphere with generic 3-parameter potential. This indicates a general relationship between 2nd order superintegrable systems and discrete orthogonal polynomials

    Contractions of Degenerate Quadratic Algebras, Abstract and Geometric

    Full text link
    Quadratic algebras are generalizations of Lie algebras which include the symmetry algebras of 2nd order superintegrable systems in 2 dimensions as special cases. The superintegrable systems are exactly solvable physical systems in classical and quantum mechanics. Distinct superintegrable systems and their quadratic algebras can be related by geometric contractions, induced by B\^ocher contractions of the conformal Lie algebra so(4,C)\mathfrak{so}(4,\mathbb {C}) to itself. In 2 dimensions there are two kinds of quadratic algebras, nondegenerate and degenerate. In the geometric case these correspond to 3 parameter and 1 parameter potentials, respectively. In a previous paper we classified all abstract parameter-free nondegenerate quadratic algebras in terms of canonical forms and determined which of these can be realized as quadratic algebras of 2D nondegenerate superintegrable systems on constant curvature spaces and Darboux spaces, and studied the relationship between B\^ocher contractions of these systems and abstract contractions of the free quadratic algebras. Here we carry out an analogous study of abstract parameter-free degenerate quadratic algebras and their possible geometric realizations. We show that the only free degenerate quadratic algebras that can be constructed in phase space are those that arise from superintegrability. We classify all B\^ocher contractions relating degenerate superintegrable systems and, separately, all abstract contractions relating free degenerate quadratic algebras. We point out the few exceptions where abstract contractions cannot be realized by the geometric B\^ocher contractions

    Separation of variables and the XXZ Gaudin magnet

    Full text link
    In this work we generalise previous results connecting (rational) Gaudin magnet models and classical separation of variables. It is shown that the connection persists for the case of linear r-matrix algebra which corresponds to the trigonometric 4x4 r-matrix (of the XXZ type). We comment also on the corresponding problem for the elliptic (XYZ) r-matrix. A prescription for obtaining integrable systems associated with multiple poles of an L-operator is given.Comment: 11 pages, AMS-Te
    corecore